
The fluctuating surface Hamiltonian for the classical Kagome antiferromagnet

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1995 J. Phys.: Condens. Matter 7 3295

(http://iopscience.iop.org/0953-8984/7/17/012)

Download details:

IP Address: 171.66.16.179

The article was downloaded on 13/05/2010 at 13:01

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/7/17
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys: Condens, Maner 7 (1995) 3295-3299. Printed in the UK 

The fluctuating surface Hamiltonian for the classical 
Kagom6 antiferromagnet 

E F Shenderts and P C W Holdswortht 
t D e p m e n t  of Physics. University of California. Berkeley, CA 94720. USA 
I Laboratoire de Physique Thiorique ENSLAPP, URA 14-26 du CNRS, Ecole Nonnale 
Sup&ieure de Lyon, 69634 Lyon, France 

Received 20 June 1994, in hnal form 27 Februv  1995 

Abstract Inlegraring over spin wave degrees of freedom, we denve the effective Hamiltonian 
to descnbe the problem of the classical KagomB antiferromagnet in relevant variables. The 
intrinsically anharmonic character of Lhis Hamiltontan, and the coupling beoveen the continuous 
and discrete degrees of freedom contained within it, puts it into a completely new class 
of problem: Lhat of highly fluctuating surfaces, for which the Hamiltonian gives a rigorous 
description of the thermodynamic properties at low T. 

Heisenberg spin systems with non-trivial infinite degeneracy of the classical ground 
state have recently become fashionable. The classical ground states form a connected 
surface in phase space on which the system can move without crossing energy barriers. 
Correspondingly the harmonic excitation spectrum contains modes of zero frequency over 
and above the conventional Goldstone mode (for a recent review see [l]). Fluctuations can 
remove the degeneracy, at least partially: an effect known as ‘order by disorder’ 12, 3, 41. 
The most interesting systems are those where the number of zero modes is macroscopic, 
that is proportional to the number of spins N [5 ,  61. In this case perturbation theory in 
the fluctuations breaks down and we can expect to find a novel magnetic behaviour. The 
best studied experimental examples of such systems are the Kagom6 [7] and pyrochlore 
[SI antiferromagnets. Experiments on these systems show no magnetic ordering transition 
down to temperatures much lower than the Curie-Weiss temperature 0 justifying the 
term ‘collective paramagnet’ introduced by Villain 191. At very low temperatures glassy 
behaviour is observed. 

It has been shown [6] that thermal fluctuations in the classical Kagom6 antiferromagnet 
preferentially select states with coplanar spin orientations. These states are the softest, in the 
sense that they have the maximum number of zero harmonic modes. The number of such 
coplanar states is proportional to exp(aN), a! being a numerical constant. The statistical 
weights of these planar states all have the same power law dependence on temperature [6] 
and they differ only in their numerical coefficients. Evidence from series expansions [SI 
and from simulations [6, 10, 111 suggests that a state with 3-sublattice Ntel magnetic order, 
the so-called .J? x f i  state has the largest weight. However neither this state nor any 
finite number of states can be considered as selected. Typical snapshots of instantaneous 
configurations showed [l 11 that the system consists of domains of different .J? x .J? states. 
We interpreted this as follows: as the statistical weights of each coplanar state have the 
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same temperature dependence, the free energy cost of creating a domain in the 8 x f i  
state is simply given by Af - L T ,  where L is the length of the domain boundary. Hence 
the probability of creating a particular domain is temperature independent and decreases 
exponentially with L for large L. However the number of possible domain boundaries 
(loops) of a given length increases, as a function of L, in an exponential manner, which 
in principle could compensate this small probability and lead to long loops, even at low 
temperature. Domains of other types of coplanar state are in principle possible, although 
they are not observed in the simulations. Thus, calculating any Gibbs average we need to 
sum over all coplanar states rather than only taking into account the contribution of the 
f i  x v‘? state and those slightly distorted from it. 

The zero modes are the decisive element leading to the novel thermodynamic behaviour; 
however there are also conventional acoustic spin wave excitations in the system. They 
play the role of ‘fast motion’ for this problem and there is a temptation to integrate over 
them, arriving at an effective Hamiltonian for the relevant variables only [ 121, i.e. for those 
variables associated with the zero modes. In doing this we do not make any assumption 
about the selection of specific coplanar states, rather the part of phase space where our 
effective Hamiltonian operates includes all coplanar states and those states slightly distorted 
from thcm. Strongly non-coplanar states are of no importance for the thermodynamics since 
their statistical weights arc smaller in powers of T. 

Following [61 we can expand the classical Hamiltonian in spin deviations from a 
coplanar state. At each site, i, we choose right-handed axes in spin space with 2i 
parallel to the unit vector Si in the particular ground state, and all fji perpendicular to 
the ground state spin plane and mutually parallel. With spin orientations parametrized 
by S; = (c,?.c,?. 1 - CY;), and  CY^ determined from ISjl = I ,  the Hamiltonian becomes 
H = HO + Cn22Hn. where H, - O(E“) .  Specifically we find 
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Hz = (J/2)[(3Si l  - Mij)€f&f + 2M,j<,?~,!’] (1) 

where we use a summation convention and define the matrix M as Mi/ = I ;  Mi, = 4 if 
i ,  j are nearest-neighbour sites; En, = 0 otherwise. J is the nearest-neighbour exchange 
constant. 

The anharmonic parts of the Hamiltonian are 

where ofj is the chirality 

(4) 

and is defined as + I  (-1) if spin Si must be rotated clockwise (anticlockwise) to lie in the 
direction of Sj. We omitted from Hq terms proportional to ( E ” ) ~  and ( C ” ) ~ ( E ’ ) ~ ,  as they 
give corrections to the thermodynamic functions that are of higher order in temperature. 
The Hamiltonian H4, like Hz, is independent of the coplanar state being considered [6, 131. 
H3, which describes the coupling between the spin waves and the zero modes, does depend 
on the specific states through the variables uij. There is no interaction in Hj  between the 
zero modes as no term proportional to 

,y --z. 
“ - 4 5  l * = j  

is possible because of symmetry factors. 
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Once in Fourier space the part of H2 concerning the in-plane spin deviations E" is 
diagonalized by the linear transformation from the cJ variables to the normal mode variables 
E:(k) 

3 

€;(a) = CC,(k)E,X(k)  (5)  
#=I 

where indices fi  = 1,2,3 are for the three sites in the KagomC lattice unit cell with 
coordinates rl = (a, O), rz = (a/2, -m), r3 = (0,O). Values of the eigenvalues and 
normalized eigenvectors may be easily obtained, as in [ 5 ,  61 

3 1  
hi(k)  = 3 hz.3(k) = - f -d4(cos2(ki) +cos?(kz) + cos2(k12)) - 3 2 2  (6)  

(7) C,, = ( 2: ) = $ ( 
where kl  = t a .  kz = ( t a  - ./5kSa)/2. k n  = k l a  - kza and the normalizing factors N,, 
are 

1 cos(k1) C O S ( ~ I Z )  + (2  - A.,) CoS(ki2) 

C O S ~ ( ~ I ) C O S ~ ( ~ I Z )  + (2 - h,)cos(kz) 
(2 -A,)' + cos'(k1) 

c113 

NI = sin(k~)& (1 - cos(kl)cos(kz)cos(klz) 
Nz = (h:(k)(l +cos2(kiz) +cos2(k2)) - N;)'" (8) 

The part of Hz containing the out-of-plane spin deviations e). can be diagonalized by the 
same transformation by substituting h i ( k )  = 2(3-h,(k)) for the h,(k) defined in equation 
(6). One can see that h:(k) = 0 for all k, which gives the branch of zero modes in the 
harmonic spectrum. 

Integrating exp(-p(H)) over all E:(k), and over Ei(k) with 01 = 2,3 we arrive at an 
effective Hamiltonian containing the slow degrees of freedom, E:@), only. In performing 
these integrals we can neglect, to leading order in T ,  all the anharmonic terms in H which 
do not contain E:(k) ;  we find 

N3 = (h:(h)(l + cos2(kiz) + cos'(k2)) - N;)'", 

Herr = H4 + $8 
(9) 

J 2 
&ff = -- (RL, - pb,) (eL )  ( e ~ ~ ) 2 u ( ~ . 4 ) u ( p A , d p , )  

&.RL, 
Op.d#t 

where the tensor T " ~ ( T )  is 

&, R&,, p p .  pb, run over all the sites of the KagomC lattice, & = R + re, where R is 
the coordinate of the unit cell, and rU the coordinate of the site within the cell. Pairs of 
coordinates for the chirality (for example (&, R&,) are nearest neighbours. The e&, are 
the parts of the E)' variables associated with the zero modes only: 

Correspondingly, one should retain only the terms stemming from the ek variables in 
the H4 appearing in equation (9). The calculation of the partition function from the 
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effective Hamiltonian for zero modes presented above implies integrating over all continuous 
variables and summing over all allowed sets of chiral variables U .  

The principal feature of Hen is the absence of an 'elastic' quadratic term, with leading 
terms being quartic. There are two kinds of quartic term in Hen. The first, appearing in 
H4 only, is independent of the chiralities and therefore identical for each coplanar state. 
The second type includes a coupling between the (e')4 and products of chiralities, and is 
therefore different for each coplanar state. It is this kind of term that leads to unequal 
statistical weights for different coplanar states. 

The matrix elements T"'B'(r), which come from this second type of term, are long ranged 
and oscillate in sign leading to highly frustrated couplings between the m variables. At large 
distance between two bonds the leading contribution to T " ~ ' ( T )  comes from the term with 
fi  = 3, as A3(k) - kZ for small k, and provides a Coulomb-like fall in Tn'g'(?-) with 
distance. The long-range, frustrated couplings are consistent with a system that remains 
strongly fluctuating in the limit of T going to zero, and for which no single long-range 
ordered state is preferred. That is, a model with short-range coupling between the chirality 
variables would lead to long-range order in the limit of T going to zero. In the simplest 
case, where the interaction is limited to nearest neighbours, either the J? x J?, or a second 
Nee1 ordered state, the q = 0 state [SI would be selected, depending on the sign of the 
coupling. With the present Hen no such such conclusion can be reached, and a consistent 
treatment represents a formidable problem. 

Together with Cherepenov and Berlinsky we recently presented a way of visualizing the 
ground state manifold, by mapping the plane formed by the spins in each triangle of the 
Kagomk lattice onto a rigid equilateral triangle [14]. The triangles form a membrane surface, 
and each ground state can be represented by a configuration of the triangulated surface in 
a three-dimensional phase space. The effective Hamiltonian (9,IO) can be considered as a 
generalization of this mapping. Order by disorder selection of the coplanar spin states means 
that we are principally concerned with the coplanar configurations of the membrane, and with 
small fluctuations away from these states. The intrinsically anharmonic character of Herr. 
and the coupling between the continuous and discrete degrees of freedom contained within 
it puts the classical Kagome antiferromagnetic into a completely new class of problems; that 
of highly fluctuating surfaces, for which the Hamiltonian He# gives a rigorous description 
of the thcrmodynamic properties at low T .  

The summation over different sets of U ,  that is over different coplanar states, is a 
vital ingredient in the calculation of the partition function. From simulations [6,  1 I ]  and the 
qualitative arguments presented above it is therefore clear that we cannot restrict ourselves to 
fluctuations around a single coplanar state. The latter procedure is exactly that of a mean- 
field theory [I31 for our Hamiltonian Hen: the integration over the continuous variables 
is done for a fixed set of chiralities, that is, a local partition function is calculated for 
fluctuations around a single coplanar state. In this approximation the free energy is then the 
sum of the logarithms of such states. Such a procedure completely ignores the possibility 
of large fluctuations between different coplanar states, with the result that in the limit of 
T -+ 0 the state with the lowest local free energy would be uniquely accepted. To perform 
the integration the product of four continuous e, variables is decoupled, with one pair of 
variables being replaced by its thermal average. 

Within the mean-field formalism the anharmonicity gives rise to a linear dispersion 
with the spin wave velocity proportional to a power of temperature. The result means that 
anharmonicity effectively restores a non-zero elasticity for spin motion corresponding to 
the zero mode. This leaves an extremely interesting problem, as we see no reason why the 
rault  should hold in a rigorous theory. As is usually the case in strongly fluctuating non- 
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perturbative systems, the self-energy should be renormalized into a non-analytic function 
of variables. leading to overdamped excitations and a non-analytic dispersion for the zero 
modes. 
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